Source code for sciapy.level1c.scia_limb_nc

# -*- coding: utf-8 -*-
# vim:fileencoding=utf-8
#
# Copyright (c) 2014-2017 Stefan Bender
#
# This file is part of sciapy.
# sciapy is free software: you can redistribute it or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2.
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html.
"""SCIAMACHY level 1c limb spectra netcdf interface
"""

from __future__ import absolute_import, division, print_function

import numpy as np
try:
	from netCDF4 import Dataset as netcdf_file
	_fmtargs = {"format": "NETCDF4"}
except ImportError:
	try:
		from scipy.io.netcdf import netcdf_file
		_fmtargs = {"version": 1}
	except ImportError:
		from pupynere import netcdf_file
		_fmtargs = {"version": 1}

from ._types import _limb_data_dtype, _try_decode

[docs]def read_from_netcdf(self, filename): """SCIAMACHY level 1c limb scan netcdf import Parameters ---------- filename : str The netcdf filename to read the data from. Returns ------- nothing """ import numpy.lib.recfunctions as rfn ncf = netcdf_file(filename, 'r') self.textheader_length = ncf.textheader_length self.textheader = _try_decode(ncf.textheader) self.orbit_state = ncf.orbit_state (self.orbit, self.state_in_orbit, self.state_id, self.profiles_per_state, self.profile_in_state) = self.orbit_state self.date = ncf.date self.cent_lat_lon = ncf.cent_lat_lon self.orbit_phase = ncf.orbit_phase try: self.nalt = ncf.dimensions['limb'].size self.npix = ncf.dimensions['wavelength'].size except: self.nalt = ncf.dimensions['limb'] self.npix = ncf.dimensions['wavelength'] self.wls = ncf.variables['wavelength'][:].copy() # pre-set the limb_data if self._limb_data_dtype is None: self._limb_data_dtype = _limb_data_dtype[:] self.limb_data = np.zeros((self.nalt), dtype=self._limb_data_dtype) self.limb_data["sub_sat_lat"] = ncf.variables['sub_sat_lat'][:].copy() self.limb_data["sub_sat_lon"] = ncf.variables['sub_sat_lon'][:].copy() self.limb_data["tp_lat"] = ncf.variables['TP latitude'][:].copy() self.limb_data["tp_lon"] = ncf.variables['TP longitude'][:].copy() self.limb_data["tp_alt"] = ncf.variables['TP altitude'][:].copy() self.limb_data["tp_sza"] = ncf.variables['TP SZA'][:].copy() self.limb_data["tp_saa"] = ncf.variables['TP SAA'][:].copy() self.limb_data["tp_los"] = ncf.variables['TP LOS Zenith'][:].copy() self.limb_data["toa_sza"] = ncf.variables['TOA SZA'][:].copy() self.limb_data["toa_saa"] = ncf.variables['TOA SAA'][:].copy() self.limb_data["toa_los"] = ncf.variables['TOA LOS Zenith'][:].copy() self.limb_data["sat_sza"] = ncf.variables['SAT SZA'][:].copy() self.limb_data["sat_saa"] = ncf.variables['SAT SAA'][:].copy() self.limb_data["sat_los"] = ncf.variables['SAT LOS Zenith'][:].copy() self.limb_data["sat_alt"] = ncf.variables['SAT altitude'][:].copy() self.limb_data["earth_rad"] = ncf.variables['earthradius'][:].copy() tmp_rad_arr = list(ncf.variables['radiance'][:].copy()) tmp_err_arr = list(ncf.variables['radiance errors'][:].copy()) # save to limb_data recarray rads = np.rec.fromarrays([tmp_rad_arr], dtype=np.dtype([("rad", 'f4', (self.npix,))])) errs = np.rec.fromarrays([tmp_err_arr], dtype=np.dtype([("err", 'f4', (self.npix,))])) self.limb_data = rfn.merge_arrays([self.limb_data, rads, errs], usemask=False, asrecarray=True, flatten=True) self._limb_data_dtype = self.limb_data.dtype if hasattr(ncf, "_attributes"): # scipy.io.netcdf / pupynere ncattrs = ncf._attributes.keys() else: # netcdf4 ncattrs = ncf.ncattrs() for _k in ncattrs: if _k.startswith("metadata"): _meta_key = _k.split("::")[1] _att = getattr(ncf, _k) self.metadata[_meta_key] = _try_decode(_att) ncf.close()
[docs]def write_to_netcdf(self, filename): """SCIAMACHY level 1c limb scan netcdf export Parameters ---------- filename : str The netcdf filename to write the data to. Returns ------- nothing """ ncf = netcdf_file(filename, 'w', **_fmtargs) ncf.textheader_length = self.textheader_length ncf.textheader = self.textheader ncf.orbit_state = self.orbit_state ncf.date = self.date ncf.cent_lat_lon = self.cent_lat_lon ncf.orbit_phase = self.orbit_phase ncf.createDimension('limb', self.nalt) ncf.createDimension('wavelength', self.npix) wavs = ncf.createVariable('wavelength', np.dtype('float32').char, ('wavelength',)) wavs.units = 'nm' wavs[:] = np.asarray(self.wls) sslat = ncf.createVariable('sub_sat_lat', np.dtype('float32').char, ('limb',)) sslat.units = 'deg' sslat[:] = np.asarray(self.limb_data["sub_sat_lat"]) sslon = ncf.createVariable('sub_sat_lon', np.dtype('float32').char, ('limb',)) sslon.units = 'deg' sslon[:] = np.asarray(self.limb_data["sub_sat_lon"]) tp_lats = ncf.createVariable('TP latitude', np.dtype('float32').char, ('limb',)) tp_lats.units = 'deg' tp_lats[:] = np.asarray(self.limb_data["tp_lat"]) tp_lons = ncf.createVariable('TP longitude', np.dtype('float32').char, ('limb',)) tp_lons.units = 'deg' tp_lons[:] = np.asarray(self.limb_data["tp_lon"]) tp_alts = ncf.createVariable('TP altitude', np.dtype('float32').char, ('limb',)) tp_alts.units = 'km' tp_alts[:] = np.asarray(self.limb_data["tp_alt"]) tp_szas = ncf.createVariable('TP SZA', np.dtype('float32').char, ('limb',)) tp_szas.units = 'deg' tp_szas[:] = np.asarray(self.limb_data["tp_sza"]) tp_saas = ncf.createVariable('TP SAA', np.dtype('float32').char, ('limb',)) tp_saas.units = 'deg' tp_saas[:] = np.asarray(self.limb_data["tp_saa"]) tp_los_zeniths = ncf.createVariable('TP LOS Zenith', np.dtype('float32').char, ('limb',)) tp_los_zeniths.units = 'deg' tp_los_zeniths[:] = np.asarray(self.limb_data["tp_los"]) toa_szas = ncf.createVariable('TOA SZA', np.dtype('float32').char, ('limb',)) toa_szas.units = 'deg' toa_szas[:] = np.asarray(self.limb_data["toa_sza"]) toa_saas = ncf.createVariable('TOA SAA', np.dtype('float32').char, ('limb',)) toa_saas.units = 'deg' toa_saas[:] = np.asarray(self.limb_data["toa_saa"]) toa_los_zeniths = ncf.createVariable('TOA LOS Zenith', np.dtype('float32').char, ('limb',)) toa_los_zeniths.units = 'deg' toa_los_zeniths[:] = np.asarray(self.limb_data["toa_los"]) sat_szas = ncf.createVariable('SAT SZA', np.dtype('float32').char, ('limb',)) sat_szas.units = 'deg' sat_szas[:] = np.asarray(self.limb_data["sat_sza"]) sat_saas = ncf.createVariable('SAT SAA', np.dtype('float32').char, ('limb',)) sat_saas.units = 'deg' sat_saas[:] = np.asarray(self.limb_data["sat_saa"]) sat_los_zeniths = ncf.createVariable('SAT LOS Zenith', np.dtype('float32').char, ('limb',)) sat_los_zeniths.units = 'deg' sat_los_zeniths[:] = np.asarray(self.limb_data["sat_los"]) sat_alts = ncf.createVariable('SAT altitude', np.dtype('float32').char, ('limb',)) sat_alts.units = 'km' sat_alts[:] = np.asarray(self.limb_data["sat_alt"]) eradii_alts = ncf.createVariable('earthradius', np.dtype('float32').char, ('limb',)) eradii_alts.units = 'km' eradii_alts[:] = np.asarray(self.limb_data["earth_rad"]) try: rads = ncf.createVariable('radiance', np.dtype('float32').char, ('limb', 'wavelength'), zlib=True, complevel=1) errs = ncf.createVariable('radiance errors', np.dtype('float32').char, ('limb', 'wavelength'), zlib=True, complevel=1) except TypeError: rads = ncf.createVariable('radiance', np.dtype('float32').char, ('limb', 'wavelength')) errs = ncf.createVariable('radiance errors', np.dtype('float32').char, ('limb', 'wavelength')) rads.units = 'ph / s / cm^2 / nm' errs.units = 'ph / s / cm^2 / nm' rads[:] = np.asarray(self.limb_data["rad"]).reshape(self.nalt, self.npix) errs[:] = np.asarray(self.limb_data["err"]).reshape(self.nalt, self.npix) for _k, _v in self.metadata.items(): setattr(ncf, "metadata::" + _k, _v) ncf.close()